

Applications of QSAR Method in Painting and Coating Industry

Eyup ŞİMŞEK, PhD Chemvisor

Outline

- Introduction to QSAR: Basics and Principles
- Applications of QSAR and Strategic Drivers to use
- > The Study Profile
- QSAR Results and Comparison with Test/Calculation Data for Selected Substances
- Discussion and Conclusions

Introduction: QSAR Basics

(Q)SAR = (Quantitative) Structure-Activity Relationship

Introduction: QSAR Principle

QSAR Applications

chem visor Compliance + Sustainability

Data production of

- Physical Chemical Properties
- Environmental Fate and Transport
- Ecotoxicological Information
- Human Health Hazard (Toxicological Information)

- Chemical Safety Assessment
 - Safety Data Sheet (SDS) Preparation/Compliance
 - Certification
- New Molecule and Formulation Development (R&D)
- Regulatory Compliance (REACH like regulations)
 - Chemical Safety Assessment
 - Notification
 - Registration & Authorizations

Reasons to use QSAR

chem sor
Compliance + Sustainability

- Regulatory Encouragements/Obligations
- Animal welfare
- Innovation
- > Time for experiments
- Occurrence of enough laboratories/resources
- Costs
- Prioritization needs
- Pro-active approach for safer chemicals

The Study Profile

- ➤ Aim: Investigation of applicability/reliability of QSAR Method for common chemicals used in paint industry for Regulatory Compliance, R&D and Quality certification by comparing the test results with QSAR results
- Method: QSAR Toolbox 4.7.1 Software (OECD)
- Selected Chemicals
 - 1. Pigment Red 170
 - 2. Bisphenol A
 - Toluene
- Investigated endpoints (if applicable)
 - Physical Chemical Properties
 - Environmental Fate and Transport
 - Ecotoxicological Information
 - Human Health Hazard (Toxicological Information)

Results: 1. Pigment Red 170 Physical Chemical Properties and Environmental Fate

Endpoint	Measured Value	QSAR Calculation
Melting/Freezing Point (°C)	M: Decomposition takes place at ca. 313 °C.	Q: 321 -350 °C (hypothetical)
N-Octanol/Water	Not available	Q: 6.04
Vapour Pressure (mmHg)	Not available	Q: 1.35E-29 - 3.77E-16 mm Hg
Water Solubility (mg/L)	M: 0.0119 mg/L	Q: 0.0135 mg/L
Biodegradation	M: Not inherently biodegradable (0 %, 29d)	Q: Not Readily Biodegradable
Bioaccumulation (BCF-Animals)	M:10-169.6 L/kg	Q:10 -194 L/kg

Results: 1. Pigment Red 170 Toxicological and Ecotoxicological Information

Endpoint	Measured Value	QSAR Calculation/Prediction
Acute Aquatic Toxicity (Algea and Cynobacteria, EC50, mg/L, 72h)	M: > 1.00 mg/L (alg, 72h)	Q: 0.238-1.83 mg/L (alg, 72h)
NOEC (Chronic)	M: 1.0 mg/L (NOEC, 21 d)	Q: 1.17 (calculated NOEC from 1.66 mg/L ChV)
Acute Toxicity (Oral, LD50, mg/kg)	M: >2E+03 mg/kg M: >1.5E+04 mg/kg	Q: 2.72E+03 mg/kg (LD50, oral rat)
Repeated dose toxicity, NOAEL	M: ≥1E+03 mg/kg bdwt/d (NOAEL	Predicted: 1E+3 mg/kg bdwt/d (NOAEL)
Genetic Toxicity (Mutagenicity)	M: Negative (19 in vitro test data)	Q: Negative
Eye irritation/Corrosion	M: Not irritating	Q: Not Corrosive to eye
Skin irritation	M: Not irritating	Q: Not irritating
Skin Sensitisation	M: Not sensitising (LLNA)	Q: Not sensitising (+ 1 positive), There are CLP notifications → sensitizing!

Results: 2. Bisphenol A Physical Chemical Properties and Environmental Fate

Endpoint	Measured Value	QSAR Calculation
Boiling Point (°C)	M: 360 °C with decomposition M: 250 - 252°C with potential decomposition.	Q: 364 °C
Melting/Freezing Point (°C)	M: 153 °C	Q: 181 °C
Flash Point (°C)	M: 227 °C	Q: 158 °C
N-Octanol/Water	M: 3.32	Q: 3.64
Vapour Pressure (mmHg)	M: 2.97E-07 hPa	M: 2.76E-07 hPa
Water Solubility (mg/L)	M: 120 mg/L	M: 161mg/L
Biodegradation	M: Readily biodegradable	Q: Not ready (?)
Bioaccumulation (BCF-Animals)	M: 38 and 73 L/kg	Q: 72.44 L/kg

Results: 2. Bisphenol A

Toxicological and Ecotoxicological Information

Endpoint	Measured Value	QSAR Calculation/Prediction
Acute Aquatic Toxicity (Algea and Cynobacteria, EC50, mg/L, 96h)	M: 2.5 mg/L, 96h, algea	Q: 1.33 mg/L, 96h, algea
Acute Aquatic Toxicity (Daphnia) (EC50-mg/L)-48 saat	M: EC50 values were in the range of 0.885 to 34.7 mg/L.	Q: 1.35 mg/L Daphnia Magna, 48h, EC50,
Acute Aquatic Toxicity (Fish, EC50, mg/L, 96hh)	M: 4.7 mg/L, 96h, fish	Q: 4.76 mg/L, 96h, fish
NOEC (Chronic)	M: 0,25-3.5 mg/L	Predicted: 1.21 mg/L
Acute Toxicity (Oral, LD50, mg/kg)	M: 3E+03 - 5.2 E+03 mg/kg	T: 1.77E+03 mg/kg
Acute Toxicity (Dermal, LD50, mg/kg)	M: ca.3E+03 mg/kg	T: 3.26E+03 mg/kg
Repeated dose toxicity, NOAEL	Not a selective reproductive toxicant	Q: Development toxicity → Negative
Genetic Toxicity (Mutagenicity)	M: Negative	Q: Negative
Eye irritation/Corrosion	M: Eye irritiant	Q: Unknown
Skin irritation	M: Not Irritating or Corrosive to skin	Q: Not Irritating or Corrosive to skin
Skin Sensitisation	M: Not sensitising in REACH registration	Q: Sensitizing

Results: 3. Toluene Physical Chemical Properties and Environmental Fate

Endpoint	Measured Value	QSAR Calculation
Auto flammability/ self ignition temperature (°C)	M: 480 °C	Q: 426 C
Boiling Point (°C)	M: 111 °C	Q: 126 °C
Melting/Freezing Point (°C)	M: -95 °C	Q: -78.1 °C
N-Octanol/Water	M: 2.73	Q: 2.54
Vapour Pressure (mmHg)	M: 23,16 mmHg	Q: 22.3 mm Hg
Biodegradation	M: 53 %-86%==> Readily biodegradable	Q: Readily biodegradable
Bioaccumulation (BCF-Animals)	M: 90 (test, 3d) Estimated: 42	Q: 27.54

Results: 3. Toluene

Toxicological and Ecotoxicological Information

Endpoint	Measured Value	QSAR Calculation/Prediction
Acute Aquatic Toxicity (Algea and Cynobacteria, EC50, mg/L, 96h)	M: 134 mg/L	Q: 17.5 -29.1 mg/LL
Acute Aquatic Toxicity (Daphnia) (EC50-mg/L)-48 saat	M: 3.78 mg/L	Q: 4.27-6.6 mg/L
Acute Aquatic Toxicity (Fish, EC50, mg/L, 96hh)	M: 5.5 mg/L.	Q: 24.8 mg/L
NOEC (Chronic)	M: 0.74 mg/L	Q: 1.173 (NOEC calculated from CrV)
Acute Toxicity (Oral, LD50, mg/kg)	M: 5.58E+03 mg/kg	Q: 3.3E+03 mg/kg
Acute Toxicity (Dermal, LD50, mg/kg)	M: >5E+03 mg/kg	Q: NA
Demostral desertavisity NOAEL		
Repeated dose toxicity, NOAEL	M: 625 mg/kg (oral, rat)	Q: 56.6 mg/kg
Genetic Toxicity (Mutagenicity)	M: 625 mg/kg (oral, rat) M: Negative	Q: 56.6 mg/kg Q: Negative
Genetic Toxicity (Mutagenicity)	M: Negative	Q: Negative

Conclusions and Recommendations

High Correlation Observed:

The comparison between experimentally measured and QSAR-predicted values across selected endpoints demonstrates high consistency.

Interpretation of Findings:

QSAR predictions for Pigment Red 170, Bisphenol A, and Toluene align closely with existing experimental datasets. Minor deviations observed were within acceptable regulatory thresholds and can be attributed to <u>data availability</u> and <u>model</u> <u>domain applicability</u>.

Implications for the Paint Industry:

The study confirms the reliability of QSAR models as a screening tool for regulatory submissions.

Reinforces the potential of QSAR in <u>reducing the need for in vivo/in vitro testing</u>, contributing to cost efficiency and animal welfare.

Supports broader application in SDS preparation, substance notification, and certification processes

Recommendations

<u>Further studies</u> on specific chemicals might be projected for further confirmation of the applicability of the method <u>New QSAR models</u> should be developed to enrich availability of models in domain by collaboration with Universities

Eyup ŞİMŞEK, PhD

eyupsimsek@chemvisor.com.tr

linkedin.com/in/simsekeyup

www.chemvisor.com.tr

+90 532 763 1339

