

Investigation Of The Properties Of Epoxy And Biobase Epoxy Matrices Containing A Natural Waste

Emre ÇELİK
Category Specialist(Marketing-Industrial Coatings)

Polisan Kansai Boya/Kocaeli Üniversitesi

Sema SAMATYA YILMAZa, Başar UYARb, Ayşe AYTAÇb

Outline

- Introduction
- Aim of the Study
- Materials
- Experimental
- Result and Discussion
- Conclusion
- References

Epoxy resins;

- Discovered by Nikolaj Alexandrovich Prileschajew(1909)[1]
- A prepolymer, low molecular weight, containing reactive oxirane ring[1]
- Rxn→with co-reactants such as multifunctional aliphatic and aromatic amines, acid and derivatives and chlorides, amids, esters etc.(Called hardeners)[2]

Usage areas of epoxy resins;

Coating/Flooring

Electronic

Adhesive

Aerospace

Literature review;

1.Sadowski et. Al→ studied called *«Enhanced adhesive performance of epoxy resin coating by a novel bonding agent»* [3]

Materials: Concrete surface, Bisphenol A and epiclorohydrin(MW:700)(resin), Phenalkamine(Hardener), Coconut fibers(Reinforcement)

First coat(2 mm): 100:33(Resin + hardener) + Coconut fibers%→(Ratios in the table 1)

Second coat(2 mm):100:50(Resin + hardener)→ Without coconut fibers

Table 1: Composition and pull off performance

Materials	Sample 1 Sample 2		Sample 3 Sample 4		Sample 5	
	%	%	%	%	%	
Coconut fibers %	0	0.50	1	1.5	2	
Pull off(MPa)	1.4± 0.33	3.47 ± 0.43	3.48 ± 0.58	2.67 ± 0.62	2.95 ± 0.70	

2.Campanale et. Al→ studied called *«Epoxy Resins for Flooring Applications, an Optimal Host for Recycling Deactivated Cement Asbestos»* [4]

Materials: PT epoxy resin(Bisphenol A + epiclorohydrin), PF epoxy resin(Bisphenol A + epiclorohydrin/contain barite), hardener, Deactivated Cement Asbestos Powder(DCAP <80 μm)

Table 2: Contents of samples

PF F	Resin	PT Resin		
Sample	DCAP(%)	Sample	DCAP(%)	
PF0	0	PT0	0	
PF2	2	PT10	10	
PF5	5	PT20	20	
PF10	10	PT30	30	

@PT Resin→ DCAP % ↑ Tensile strength and flexural st. ↓ Compressive st. ← Shore hardness ↑

PT_{mechanical properties} > PF_{mechanical properties}

PT20 samples → Optimum results

3. Krzywinski et. Al→ studied called *«Engineering and Manufacturing Technology of Green Epoxy Resin Coatings Modified with Recycled Fine Aggregates»* [5]

Materials: Epoxy resin(Bisphenol A), poliamine epoxy hardener, concrete surface, recycled fine aggregates(RFA), natural fine aggregates(NFA)

Epoxy resin + hardener +(RFA+NFA)→(Ratios Table 3)

Table 3: Aggregate contents(Added on epoxy resin) and result of pull off test

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
RFA	0%	20%	40%	60%	80%	100%
NFA	100%	80%	60%	40%	20%	0%
Pull off(MPa)	1.2	1.6	1.5	1.6	1.8	1.9

- Replacing NFA with RFA has positive effect on pull-off strength
- The best result → Sample 6(%100 RFA)

Aim of the Study

Aim of the Study

- The adhesion, thermal, mechanical and morphological properties of Afyon poppy capsule waste added to the standart and bio based epoxy matrix at certain rates were investigated.
- Natural waste into benefit

Materials

Materials

Resin 1: Standart epoxy resin(DGBA)

Epoxy equivalent weight: 190-210 g/eq

Abbreviation: **EPR**

Hardener: Standart epoxy resin(DGBA)

Active hydrogen equivalent weight: 95 g/eq

Resin 2: Bio-based epoxy resin

Epoxy equivalent weight: 180-190 g/eq

%27 biocarbon content

Abbreviation: **BEPR**

Reinforcement: Opium poppy capsule waste

Avarega particle size: 69 µm

Mixing ratio of Resin 1 and hardener→2.125+1 / Mixing ratio of Resin 2 and hardener→2.05+1

Tablo 4:Formulation

Sample	Raw EPR	EPR0.5	EPR3	Raw BEPR	BEPR0.5	BEPR3
Poppy capsule	0	0.5	3	0	0.5	3
waste%						

Experimental

Experimental

Pull Off Test

Equipment: PosiTest AT-A

Test substrate: ST-37 Black sheet

(Thickness: 3 mm)

Application thickness: 1.2 mm

Curing Time: 7 days

Ambient temperature: 23± 2 °C

Standard: ASTM 4541-22

Tensile Strength

Equipment: Instron

Film Thickness: 200 μm

Curing Time: 7 days

Ambient temperature: 23± 2 °C

• Standard: ASTM D882

Experimental

DSC(Differential scanning calorimetry)

Equipment: Mettler Toledo(Star e SW)

Curing Time: 7 days

Ambient temperature: 23± 2 °C

Range:-20-100 °C

Heating rate: 10 °C/min

Morfolojik Özellikler

Equipment: Nikon DS-Fi2

• Curing Time: 7 days

Ambient temperature: 23± 2 °C

Measurement: 50 and 100 μm

Result and Discussion

Result and Discussion

Pull Off:

Figure 1: Comparative pull-off test results

Result and Discussion Pull Off:

BEPR (Before & After)

EPR3 (Before & After)

Result and Discussion

Tensile Strength:

Figure 2: Comparative tensile strength test result

Result and Discussion

DSC (Differential scanning calorimetry):

Figure 3: Comparative DSC test(Tg) result

BEPR_{Tg}
$$\rightarrow$$
 42.35 °C
BEPR0.5_{Tg} \rightarrow 41.81 °C
BEPR3_{Tg} \rightarrow 42.07 °C

EPR microscop images

EPR0.5 microscop images

EPR3 microscop images

BEPR microscop images

BEPR0.5 microscop images

BEPR3 microscop images

Conclusion

Conclusion

- In today's world, recycling waste and evaluating it in other applications is important for sustainability.
- In previous studies→Reinforced to epoxy structure with coconut fiber, DCAP and recycled fine aggregate and performances were investigated.
- In this study
 → Poppy capsule waste was added to standard and bio epoxy matrices and performances were examined.
- The best results of pull off were obtained with 0.5% reinforcement(EPR0.5) in standard epoxy resin.
- The best results of pull off were obtained with 3% reinforcement(BEPR3) in bio epoxy resin.
- EPR_{pull off} > BEPR_{pull off} → in 3 specimens
- Tensile stress at max load → The added additive did not change much
- Glass transition temperature → The added additive did not change much but BEPR>EPR
- Morphological test→ As the amount of additive increased, partial agglomeration was observed.

References

References

- 1. Jin, F.L., Li, X., Park, S.J. Synthesis and application of epoxy resins: A review. *Journal of Industrial and Engineering Chemistry*.2015,29,1-11.
- 2. Verma, C., Olasunkanmi L. O., Akpan, E.D., Quraishi, M.A., Dagdag, O., Gouri, M.E., Sherif, E.S.M., Ebenso, E.E. Epoxy resins as anticorrosive polymeric materials: A review. *Reactive and Functional Polymers*. 2019.
- 3. Sadowski, Ł., Kampa, Ł., Chowaniec, A., Królicka, A., Zak, A., Abdoulpour, H., Vantadori, S. Enhanced adhesive performance of epoxy resin coating by a novel bonding agent. Construction and Building Materials. 2021, 301, 124978.
- 4. Campanale, F., Vergani F., Marian, N.M., Viti, C., Bianchi A., Ferrario, S., Mauri, M., Capitani, G. Epoxy Resins for Flooring Applications, an Optimal Host for Recycling Deactivated Cement Asbestos. *Polymers*. 2023, 15,1410.
- 5. Krzywiński, K., Sadowski, Ł., Stefaniuk, D., Obrosov, A., Weiß, S. Engineering and Manufacturing Technology of Green Epoxy Resin Coatings Modifed with Recycled Fine Aggregates. *International Journal of Precision Engineering and Manufacturing-Green Technology*. 2022, 9, 253-271.

«Benim manevi mirasım bilim ve akıldır.» «My spiritual legacy is science and reason.»

THANK YOU...

